Filebase
HomepageFilebase DashboardDiscordBlog
  • đź‘‹Welcome to Filebase!
  • Getting Started
    • FAQ
    • Service Limits
    • Getting Started Guides
      • Pin Your First File To IPFS
      • Developer Quick Start Guide
  • IPFS Concepts
    • What is IPFS?
    • What is an IPFS CID?
    • What is IPFS Pinning?
    • What is an IPFS Gateway?
  • IPFS Pinning
    • Pinning Files
    • Listing Files
    • Deleting Files
    • Event Notifications
  • IPNS Names
    • Managing Names
  • Dedicated IPFS Gateways
    • Managing Dedicated Gateways
    • Access Controls
    • Image Optimizations
    • Adding a Custom Domain
  • API Documentation
    • IPFS RPC API
    • S3-Compatible API
      • Cross Origin Resource Sharing (CORS)
        • Create and Apply a CORS Rule to a Filebase Bucket
        • Deep Dive: Cross Origin Resource Sharing (CORS)
      • Pre-Signed URLs
    • Filebase Platform APIs
    • IPFS Pinning Service API
  • Code Development + SDKs
    • Code Development
      • Apache Libcloud - Python
      • Apostrophe CMS
      • AWS Lambda - NodeJS
      • AWS Lambda - Python
      • AWS SDK - Go (Golang)
      • AWS SDK - Java
      • AWS SDK - JavaScript
      • AWS SDK - .NET
      • AWS SDK - PHP
      • AWS SDK - Python
      • AWS SDK - Ruby
      • Code Examples
        • How To Utilize Filebase with NodeJS
      • DataCamp
      • Dart / Flutter
      • Django
      • Docker
        • Docker Volume Backup
      • Elixir Phoenix
      • Filebase NPM Package
      • Fog.io - Ruby
      • Google App Scripts
      • Integrated Haskell Platform
      • Laravel
      • Nuxt
      • Paperspace
      • Postman
      • Reading a JSON File
      • UNA
      • Unity
      • Uppy AWS S3 Plugin
      • Vue
      • Watcher for NodeJS
      • Webpack S3 Plugin
      • Xamarin
    • SDK Examples: Pinning Files and Folders to IPFS
      • AWS SDK for .NET
      • AWS SDK for Go
      • AWS SDK for JavaScript
      • AWS SDK for PHP
      • AWS SDK for Python
      • AWS SDK for Ruby
  • Archive
    • Content Archive
      • IPFS Getting Started Guide
      • Web Console Getting Started Guide
      • IPFS Tools
        • IPFS CLI
        • IPFS Desktop
        • IPFS Pin Sync
        • IPFS Pinning Service API
        • IPFS3up
      • Third Party Tools and Clients
        • Backup Client Configurations
          • AhsayCBS
          • BackupAssist Classic
          • BackupAssist ER
          • BackupNinja
          • BackupSheep
          • Bacula Enterprise Edition
          • CloudBacko
          • CloudBerry Backup
          • Cloudron
          • cPanel
          • Comet
          • Commvault
          • Duplicacy
          • Ghost IPFS Storage Adapter
          • IPFS Pinning GitHub Action
          • JetBackup
          • Kopia
          • MoveBot
          • MSP360 Online Backup
          • oDrive
          • Photos+ Cloud Library
          • qBackup
          • S3 Uploader for GitHub Actions
          • SimpleBackups
          • SnapShooter
          • Strapi Provider Plugin
          • Veeam
          • Wordpress
            • Media Cloud
            • XCloner
          • Zerto
        • CLI Tools
          • Ansible
          • Apache Pulsar
          • AWS CLI
            • How To Delete Data with AWS CLI
            • What is Multipart Upload?
          • Bash
            • Backup Files to IPFS with Bash
            • Laravel Backup with Bash
            • MongoDB Backup with Bash
            • PostgreSQL Backup with Bash
            • Wordpress Backup with Bash
          • cURL
          • Elasticsearch
          • IPFS-CAR
          • IPFScrape
          • IPGet
          • Jenkins
          • JFrog Artifactory
          • Kubernetes
            • Backup and Restore InFluxDB to Filebase with TrilioVault
            • CSI-S3
            • Kasten K10
            • Kerberos Vault
            • Longhorn.io
            • Stash for Kubernetes
            • Velero
          • Litestream
          • Minty
          • MongoDB
          • MoSMB
          • MySQL
          • Next.js .CAR File Upload
          • NFT Image Generator
          • NGINX S3 Gateway
          • Pinning Docker Images to IPFS
          • Pinning Encrypted Files to IPFS
          • PowerShell
            • Calculate the Size of Filebase Buckets using PowerShell
          • Rclone
            • Backing Up DigitalOcean Spaces to Filebase using Rclone
          • Restic
          • S3cmd
          • S3Express
          • S3FS-FUSE
          • S3QL
          • S3Surfer
          • S4cmd
          • SeaweedFS
          • Tableland
        • Content Delivery Networks
          • Bunny CDN
          • CloudFront CDN
          • Fastly CDN
        • File Management Client Configurations
          • Airbyte
          • Arq
          • Astiga
          • AWS Rekognition
          • AWS S3 Manager - iOS App
          • BucketAnywhere for S3 - Android App
          • CentreStack
          • CloudFlyer
          • Cloudfser
          • Couchdrop
          • CrossFTP
          • CyberDuck
            • How To Delete Data with CyberDuck
          • Dropshare
          • Duplicati
          • FileBrowserGO
          • Flexify.IO
          • ForkLift
          • Goofys
          • Joplin
          • LucidLink
          • MASV
          • Matrix Synapse
          • MinIO Gateway for S3
          • Mountain Duck
          • NetDrive
          • Nexfs
          • NextCloud
          • Nodeum
          • ownCloud
          • Plesk
          • Pure Storage FlashBlade
          • RaiDrive
          • S3 Browser
          • ShareX
          • SmartFTP
          • StableBit Cloud Drive
          • Storage Made Easy Enterprise File Fabric
          • WinSCP
        • NAS Device Configurations
          • Buffalo TeraStation
          • Datadobi DobiProtect
          • Netapp ONTAP Select
          • OpenDrives Atlas
          • Synology Hyper Backup
          • TrueNAS CORE
      • Knowledge Base
        • Deep Dives
          • Deep Dive: Blockchains
          • Deep Dive: Decentralized Compute
          • Deep Dive: Decentralized Digital Identity
          • Deep Dive: Decentralized Storage
          • Deep Dive: Erasure Coding
          • Deep Dive: Geo-Redundancy
          • Deep Dive: Metadata
          • Deep Dive: Metaverse
          • Deep Dive: NFTs
          • Deep Dive: Web3
        • Filebase eBooks
        • Filebase One-Pagers
        • Filebase Whitepapers
        • Web3 Tutorials
          • Alchemy
            • Alchemy: Build a dApp That Provides Real-Time Ethereum Transaction Notifications
            • Alchemy: Create a Full-Stack dApp
            • Alchemy: Create a Hello World Smart Contract
            • Alchemy: Create Your Own ERC20 Cryptocurrency
            • Alchemy: Decentralized Youtube
            • Alchemy: How to Create and Mint an NFT using Filebase
            • Alchemy: How to Mint an NFT Using Web3.js
            • Alchemy: Using The Alchemy SDK with NFTs Minted Through thirdweb
          • Agoric
            • Agoric: Create a DeFi dApp Using Agoric That’s Stored on Filebase
          • AirSwap
            • AirSwap: Track NFT Contract Addresses with AirSwap CLI
          • ArcBlock
            • ArcBlock: Running an ArcBlock Blocket Server on IPFS
          • Ankr
            • Ankr: Create a Truffle Project with Ankr and Filebase
            • Ankr: Deploy a Smart Contract on Polygon using Ankr that is backed up to Filebase
          • Avalanche
            • Avalanche: How To Launch a Generative NFT Collection With Avalanche and IPFS
          • Backing Up NFTs
          • Brownie
            • Brownie: Create and Mint an NFT Using Brownie
          • Bueno
            • Bueno: How to Create a Generative NFT Collection with Bueno
          • Cardano
            • Cardano: Submit Cardano Blockchain Transactions with Embedded Metadata Stored on Filebase
          • Ceramic
            • Ceramic: How to Host a Ceramic Node Using Decentralized Storage
          • Create-IPFS-app
          • Cosmos
            • Cosmos: Storing Cosmos Chain Governance Metadata on IPFS
          • DeCommerce
          • Ethereum Name Service
            • ENS: Configure an ENS Domain to use a Filebase IPFS Dedicated Gateway
          • Figment Datahub
            • Figment Datahub and Avalanche: Make an e-Voting dApp Using Figment Datahub, Avalanche, and Filebase
            • Figment Datahub and Celo Network: Create an ERC1155 NFT on the Celo Network using Figment Datahub and Objects Stored on Filebase
          • Flow
            • Flow: How to Create an NFT Marketplace with Filebase + Flow
          • Fauna
            • Fauna: Host an Application on IPFS with IPFS Dedicated Gateways
          • Ganache
            • Ganache: Create a dApp Hosted on IPFS
          • GUN
            • GUN: Create a Decentralized Chat App with GUN and IPFS
          • Hardhat
            • Hardhat: Creating an NFT Contract using Hardhat and Setting NFT Metadata using IPFS on Filebase
          • Harmony
            • Harmony: Deploy an HRC721 NFT on Harmony with IPFS
          • Hosting a Form on IPFS
          • iExec
            • iExec: Using iExec and Tee Worker to Create Apps that Use Datasets Stored on Filebase
          • Infura
            • Infura: Build dApp Frontends with Infura, React, and IPFS
            • Infura: Create an NFT Contract Factory with Metadata stored on IPFS
          • Lens Protocol
            • Lens Protocol: Build a Decentralized Social Media Network Stored on IPFS
          • LIT Protocol
            • LIT Protocol: Create a MintLIT NFT with LIT Protocol and IPFS
          • LivePeer
            • LivePeer: Mint a Video NFT with LivePeer
          • Macrometa
            • Macrometa: Track IPFS Files with Macrometa
          • Mina Protocol
            • Mina Protocol: Create a Simple zkApp with Mina Protocol and IPFS
          • NEAR Protocol
            • NEAR Protocol: Storing Off-Chain Data on IPFS using Filebase
          • NFTPort
            • NFTPort: Create an NFT Collection with NFTPort
          • Ocean Protocol
            • Ocean Protocol: Publish Data NFTs Stored on IPFS using Ocean Protocol
          • Pin Tezos Tokens Tool
          • Polkadot
            • Polkadot: Deploy a Polkadot dApp on Decentralized Storage
          • Polygon
            • Polygon: Building an App NFT With Polygon
            • Polygon: Make a Donation App with IPFS and Polygon
          • Python
            • Generating NFT Metadata with Python
          • QuickNode
            • QuickNode: Create a Token dApp using QuickNode
          • Remix
            • Remix: Create a Web App with Remix to Upload to Decentralized Storage
          • Remix IDE
            • Remix IDE: Creating Interactive NFTs with IPFS and Remix IDE
          • Secret Network
            • Secret Network: Create an NFT on Secret Network with Data Stored on IPFS
          • Stargaze
            • Stargaze: Create an NFT Collection Using IPFS and Stargaze
          • Starknet
            • Starknet: Create a HardHat Project Using A Starknet Plugin Hosted On IPFS
          • Studio 721
            • Studio 721: Create an NFT Collection with Studio 721 and IPFS
          • Solana
            • Solana: Minting an NFT Using Sugar, Candy Machine, and Filebase
          • Subsquid
            • Subsquid: Querying NFT Data using Subsquid and a Filebase IPFS Dedicated Gateway
          • Tailwind CSS
            • Tailwind CSS: Build an Image Gallery App with IPFS and Tailwind CSS
          • Tatum
            • Tatum: How To Mint NFTs on Solana with Tatum
          • Tezos
            • Tezos: Create an NFT on the Tezos Network using IPFS on Filebase
          • thirdweb
            • thirdweb: Build an NFT Loot Box with thirdweb and IPFS
            • thirdweb: Build an NFT Minting Page with thirdweb, IPFS, RainbowKit, and WAGMI
            • thirdweb: Create a Discord Bot That Gives Roles to NFT Holders
            • thirdweb: Create a Gated Website Using NFTs and IPFS
            • thirdweb: Create an NFT Marketplace with thirdweb and IPFS
            • thirdweb: Release an NFT Drop Using thirdweb and IPFS
          • useDApp
            • useDApp: Create a dApp using useDApp and IPFS
          • Unstoppable Domains
            • Unstoppable Domains: Create a Decentralized Website Using Unstoppable Domains and IPFS Folders
            • Unstoppable Domains: Deploy a Decentralized Blog Using Unstoppable Domains, Akash, and IPFS
            • Unstoppable Domains: IPFS Configuration
          • Vultr
            • Vultr: Store Bedrock Minecraft Worlds on Decentralized Storage
            • Vultr: Store Forge Minecraft Worlds on Decentralized Storage
            • Vultr: Store PaperSpigot Minecraft Worlds on Decentralized Storage
            • Vultr: Store Vanilla Minecraft Worlds on Decentralized Storage
          • Waffle
            • Waffle: Deploy a Smart Contract with Waffle That’s Stored on IPFS
          • Walt.id
            • Walt.id: Mint an NFT with Walt.id and Filebase
          • Web3 Toolbox
            • Web3 Toolbox: Building an NFT Drop With Web3 Toolbox
Powered by GitBook
On this page
  • What is Decentralized Compute?
  • Using Decentralized Compute

Was this helpful?

  1. Archive
  2. Content Archive
  3. Knowledge Base
  4. Deep Dives

Deep Dive: Decentralized Compute

Learn what decentralized compute is and how it works.

PreviousDeep Dive: BlockchainsNextDeep Dive: Decentralized Digital Identity

Last updated 10 months ago

Was this helpful?

Every blockchain network is comprised of compute nodes. These nodes range from all sorts of hardware and configurations, from home computers and laptops to enterprise servers located in massive data centers. Traditional centralized cloud computing providers make up a large portion of the nodes that are located on popular chains. For example, AWS hosted nodes make up over

While blockchains strive to be as decentralized as possible, using centralized providers to host blockchain nodes can contradict how decentralized they actually are. While using cloud providers can be a better solution than hosting multiple blockchain nodes on your own local hardware since you can configure different nodes to run in data centers in different regions, it still isn’t the best solution.

Sometimes, these cloud providers have access to your user data and the analytics data of the virtual machines that runs your blockchain nodes. Some providers also have access to the data on any virtual machine they host for you, which can be intrusive and go against the Web3 value of data ownership.

Another concern of using traditional centralized cloud computing providers is that data is hosted and stored in a traditional Web2 manner, which is prone to data breaches and outages. While it might be easier than hosting nodes yourself, shouldn’t Web3 infrastructure be as decentralized as possible?

What is Decentralized Compute?

Decentralized compute providers leverage blockchain technology to offer compute services in a decentralized and secure manner that utilizes the core values and benefits of Web3. Users can choose to either share their excess computing resources to be used by others for cloud computing, or they can utilize shared resources to run blockchain nodes.

Many decentralized compute providers utilize their own blockchain network. These networks are often a layer-2 network that processes transactions on-chain and then sends the results off-chain to a layer-1 network such as Ethereum for publication. Each decentralized compute infrastructure uses a different configuration and backend programmatic method for resource determination and authentication, but the workflow is often similar. The general workflow involves resources that are pooled together and purchased by users to run applications or software, which utilizes blockchain networks on the backend for confirming and validating transactions.

There are two types of decentralized cloud computing providers. The first type provides cloud computing that can be used for any use-case, while the second focuses on providing resources for hosting blockchain nodes specifically. Within these types of providers, there are different types of decentralized compute nodes. There are full nodes, also called dedicated or private nodes, and shared or public nodes.

When a user accesses a full node, they have complete access to the node’s entire compute resources and anything that they run on the node has been deployed by them. In contrast, multiple users can utilize shared nodes for various workflows simultaneously, each using a small percentage of the node’s total resources. If a user deploys an application using a shared node, their application is typically either small in size or it is being deployed across a number of nodes which can benefit the application through increased reliability and performance.

Some decentralized compute platforms provide the option for users to contribute their resources in a marketplace format where they can monetize the resources they provide. In contrast, there are other decentralized compute platforms that use a private network of resources that they control the rental of and do not allow users to contribute their resources as providers themselves. The Akash Network is an example of a decentralized compute platform that allows users to contribute their resources in exchange for monetization, while QuickNode is an example of an infrastructure with private resources that it rents out to its users.

Using Decentralized Compute

To use a decentralized compute provider, first a user must request the amount of resources they’d like to rent from the provider’s marketplace. These resources typically include amount of CPU processing power, RAM memory capacity, and sometimes include GPU processing power. Once a request has been made for the resources, a validator node on the compute provider’s infrastructure must approve the request.

This approval process matches the resource request with a provider that can provide those resources. If the provider allows users to contribute resources, this process includes a bidding process. If the provider uses a private network of resources, the request is approved much quicker. Once the request has been approved and the resources have been provided, the user who requested the resources and the provider enter a lease agreement facilitated by a smart contract that outlines the terms of the resource rental. A portion of the lease price sometimes includes a fee that gets paid back to the compute provider.

50% of the nodes on the Ethereum network.